Abstract

A novel design method for high Q piezoelectric resonators was presented and proposed using the 3-D equations of linear piezoelectricity with quasi-electrostatic approximation which include losses attributed to mechanical damping in solid and resistance in current conduction. There is currently no finite element software for estimating the Q of a resonator without apriori assumptions of the resonator im- pedance or damping. There is a necessity for better and more realistic modeling of resonators and filters due to miniaturization and the rapid advances in frequency ranges in telecommunication. We presented new three-dimensional finite element models of quartz and barium titanate resonators with mechanical damping and resistance in current conduction. Lee, Liu and Ballato's 3-D equations of linear piezoelectricity with quasi-electro- static approximation which include losses attributed to mechanical damping in solid and resistance in current conduction were formulated in a weak form and implemented in COMSOL. The resulting finite element model could predict the Q and other electrical parameters for any piezoelectric resonator without apriori as- sumptions of damping or resistance. Forced and free vibration analyses were per- formed and the results for the Q and other electrical parameters were obtained. Comparisons of the Q and other electrical parameters obtained from the free vibra- tion analysis with their corresponding values from the forced vibration analysis were found to be in excellent agreement. Hence, the frequency spectra obtained from the free vibration analysis could be used for designing high Q resonators. Results for quartz thickness shear AT-cut and SC-cut resonators and thickness stretch poled barium titanate resonators were presented. An unexpected benefit of the model was the prediction of resonator Q with energy losses via the mounting supports.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.