Abstract

Poly(vinylidene fluoride) (PVDF), an organic piezoelectric polymer, has been extensively studied for application in flexible pressure sensors. In order to obtain a sufficient voltage output from PVDF-based pressure sensors, a poling treatment of PVDF films is necessary. Conventional poling methods generally require the application of a considerably high electric field and high annealing temperatures, which lead to an increase in the cost of sensor fabrication. Herein, we propose a method for the formation of poled PVDF films by drop-casting a PVDF-dissolved polar solution onto chemically modified electrodes and subsequent drying of the dropped solution. The PVDF-based pressure sensors in which the underlying gold (Au) electrode was modified with a thiol reagent, 1H,1H,2H,2H-Perfluorodecanethiol (PFDT), exhibited a remarkably high pressure sensitivity, while negligible sensitivity was achieved without surface modification. It was demonstrated that surface chemical modification aligns the direction of the surface dipoles. The proposed method is advantageous for controlling the polarization of PVDF films on electrode surfaces.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.