Abstract
A film bulk acoustic wave resonator (FBAR) was fabricated by using RF-sputtered aluminum nitride (AlN) between 400 nm-thick molybdenum (Mo) bottom and top electrodes. To reduce the acoustic loss of FBARs, an air gap cavity is fabricated below the membrane by a silicon deep-etch process. The sputtered 950 nm-thick AlN film was oriented in the (002) direction. The FBARs were measured by using a HP 8510C vector network analyzer in a wide frequency range of 0.5 ∼ 10.5 GHz. A resonance frequency was observed near 2 GHz as well as another, a third mode about 7 GHz. The minimum insertion loss was 0.056 dB at 1858 MHz. An equivalent circuit modeling regarding this FBAR was performed with modified Butterworth Van-Dyke (MBVD) models, wellknown piezoelectric equivalent circuit models. The calculated effective electromechanical coupling coefficient (keff ) was greater than 6.59 %.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.