Abstract

Piezoelectric photocatalysis has been considered as a fascinating solution to promote the effective separation of photogenerated carriers for the efficient removal of organic pollutants. Herein, we report that micro-morphology plays a decisive role in determining piezo potential to enhance photocatalytic activities. The high deformation capacity of Bi3.25La0.75Ti3O12 (BLT) nanowires leads to superior piezo-photocatalytic activity compared to BLT nanosheets and BLT nanospheres for efficient removal of refractory 2,4-Dichlorophenol (2,4-DCP) and tetracycline (TC). One-dimensional materials exhibit extremely high elasticity due to their greatly reduced size, allowing for a large degree of mechanical deformation. Under light and ultrasonic, the removal rates of 2,4-DCP and TC by BLT nanowires reached 93.04% and 96.30% after 60 min and 12 min, respectively, which were 2.97 and 2.96 times higher than those by light irradiation only. Furthermore, the ultrasonic power and frequency are important factors to optimize the piezoelectric catalytic and piezo-photocatalytic performance. Modulating the morphology of the material can regulate the piezoelectric effect of the material to suit different practical needs. Moreover, it is simpler to obtain efficient piezoelectric effects through morphology optimization than to design and develop new materials for a wider range of applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.