Abstract
Piezoelectric polymers, capable of converting mechanical vibrations into electrical energy, are attractive for use in vibrational energy harvesting due to their flexibility, robustness, ease, and low cost of fabrication. In particular, piezoelectric polymers nanostructures have been found to exhibit higher crystallinity, higher piezoelectric coefficients, and “self‐poling,” as compared to films or bulk. The research in this area has been mainly dominated by polyvinylidene fluoride and its copolymers, which while promising have a limited temperature range of operation due to their low Curie and/or melting temperatures. Here, the authors report the fabrication and properties of vertically aligned and “self‐poled” piezoelectric Nylon‐11 nanowires with a melting temperature of ≈200 °C, grown by a facile and scalable capillary wetting technique. It is shown that a simple nanogenerator comprising as‐grown Nylon‐11 nanowires, embedded in an anodized aluminium oxide (AAO) template, can produce an open‐circuit voltage of 1 V and short‐circuit current of 100 nA, when subjected to small‐amplitude, low‐frequency vibrations. Importantly, the resulting nanogenerator is shown to exhibit excellent fatigue performance and high temperature stability. The work thus offers the possibility of exploiting a previously unexplored low‐cost piezoelectric polymer for nanowire‐based energy harvesting, particularly at temperatures well above room temperature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.