Abstract
This paper reports the approach to boost the acoustic performances of PMUTs (Piezoelectric Micromachined Ultrasonic Transducers) including vibrational amplitude, acoustic pressure and electromechanical coupling by using the pinning boundary structure. An analytical model is developed based on an assumed mode shape and is validated with matching results from numerical simulations. Prototyped devices are fabricated and tested with a measured 2.5X improvement in displacement and 3.5X higher pressure output per volt at resonance as compared to those of PMUTs with clamped boundary. As a demonstration example, a PMUT-based ultrasonic tilt sensor is investigated with measured result using the receiving PMUT’s pressure amplitude for a tilting range of ±8 degrees and an error of ±0.7 degrees. [2020-0152]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.