Abstract
The rapid development of the fifth-generation mobile networks (5G) and Internet of Things (IoT) is inseparable from a large number of miniature, low-cost, and low-power sensors and actuators. Piezoelectric microelectromechanical system (MEMS) devices, fabricated by micromachining technologies, provide a versatile platform for various high-performance sensors, actuators, energy harvesters, filters and oscillators (main building blocks in radio frequency front-ends for wireless communication). In this paper, we provide a comprehensive review of the working mechanism, structural design, and diversified applications of piezoelectric MEMS devices. Firstly, various piezoelectric MEMS sensors are introduced, including contact and non-contact types, aiming for the applications in physical, chemical and biological sensing. This is followed by a presentation of the advances in piezoelectric MEMS actuators for different application scenarios. Meanwhile, piezoelectric MEMS energy harvesters, with the ability to power other MEMS devices, are orderly enumerated. Furthermore, as a representative of piezoelectric resonators, Lamb wave resonators are exhibited with manifold performance improvements. Finally, the development trends of wearable and implantable piezoelectric MEMS devices are discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.