Abstract

Piezoelectric materials that can function at high temperatures without failure are desired for structural health monitoring and/or nondestructive evaluation of the next generation turbines, more efficient jet engines, steam, and nuclear/electrical power plants. The operational temperature range of smart transducers is limited by the sensing capability of the piezoelectric material at elevated temperatures, increased conductivity and mechanical attenuation, variation of the piezoelectric properties with temperature. This article discusses properties relevant to sensor applications, including piezoelectric materials that are commercially available and those that are under development. Compared to ferroelectric polycrystalline materials, piezoelectric single crystals avoid domain‐related aging behavior, while possessing high electrical resistivities and low losses, with excellent thermal property stability. Of particular interest is oxyborate [ReCa4O (BO3)3] single crystals for ultrahigh temperature applications (>1000°C). These crystals offer piezoelectric coefficients deff, and electromechanical coupling factors keff, on the order of 3–16 pC/N and 6%–31%, respectively, significantly higher than those values of α‐quartz piezocrystals (~2 pC/N and 8%). Furthermore, the absence of phase transitions prior to their melting points ~1500°C, together with ultrahigh electrical resistivities (>106 Ω·cm at 1000°C) and thermal stability of piezoelectric properties (< 20% variations in the range of room temperature ~1000°C), allow potential operation at extreme temperature and harsh environments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.