Abstract

The global prevalence of dengue fever has grown so dramatically in recent years that it is endemic in more than 100 countries and has become a major international public health concern. Moreover, since the flu-like symptoms that accompany dengue fever are atypical and varied, the detection procedures currently used to identify it are cumbersome and time-consuming, making early stage epidemiological control and effective medical treatment of this epidemic almost impossible. In this study, a QCM-based detection system was developed in which two monoclonal antibodies against dengue E and NS-1 protein, respectively, were control orientated immobilized on QCM via protein A to produce an immunochip. Various sample pretreatment procedures were evaluated to ascertain the most suitable combination, and both the simulating samples and the clinical specimen were examined by the immunochip. The results revealed that the cibacron blue 3GA gel-heat denature (CB-HD) method was the most effective sample pretreatment technique. Due to the complex composition of the serum, the immunochip could only effectively quantify dengue viral antigens in a 1/1000 untreated simulated sample. With the help of the CB-HD method, the dilution folds were found to capable of being reduced from 1000 to 100, and the detection limit lowered to 1.727 microg/ml (E protein) and 0.740 microg/ml (NS-1 protein) in the original sample. While the cocktail immunochip could not quantify both antigens separately, the higher signal level rendered it a more effective qualification tool for suspect screening. Moreover, the results of the analysis of clinical specimens also proved the ability and future potential of cocktail immunochip in discriminating dengue-positive cases from negative serum specimens in the viremia phase.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.