Abstract
Background: Most of the proposed interface circuits use bulky inductors to enhance the key performance parameter i.e., power transfer efficiency. This sets constraints on the design of power conditioning circuitry for constrained IoT applications. Objective: To replace the bulky physical inductor with area optimized components suitable for integrated circuit realization with reduced silicon footprint for constrained applications like Internet-of-Things (IoT). Method: This paper presents the implementation of Circuit Resonance with Active Inductor (CRAI) technique based interface circuit design to deliver the maximum power generated from the Piezoelectric Energy (PEH) source to the load. Results: Compared to the conventional FWBR technique, the proposed CRAI technique improves ≈2X power delivered to the load. Conclusion: The proposed work presents an inductor-less interface circuit for PEH. An active inductor (gyrator) is used to induce ‘IP’ rejection at the PEH circuit resonant frequency to enhance the performance parameters. Since the proposed technique is based on active inductor, it can be easily fabricated in small integrated circuit (IC) packages, allowing integration with state-of-the-art constrained IoT applications. CRAI technique based on the rejection of ‘IP’ at the resonance using active inductor is first reported here. The proposed concept is non-adiabatic, but it could be used for constrained self-powered autonomous IoT applications and it could be of importance in guiding the design of new interface circuits for PEH.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Recent Advances in Electrical & Electronic Engineering (Formerly Recent Patents on Electrical & Electronic Engineering)
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.