Abstract

The application of electroactive polymer devices requires the availability of their properties at various operating conditions. This in turn necessitates a structure-property relationship based on an in-depth understanding of the underlying mechanism responsible for their strain-field response. Cellulose-based Electro-Active Paper (EAPap) has been studied as an attractive Electro Active Polymer (EAP) material for artificial muscles. The feasibility of EAPap material as an actuator/sensor application is greatly dependant on piezoelectric effect. In this paper, converse and di rect piezoelectric ef fect s of Electro-Active Paper materials are studied to characterize piezoelectric effects of EAPap. All experiments were conducted in an environmental chamber that can control temperature and humidity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call