Abstract

Piezoelectric discharge characteristic of semiconductor ZnO nanorod was studied with atomic force microscope in contact mode. The c-axial orientation ZnO nanorod array film was fabricated with two-step wet-chemical method. Electric pulses were got when Pt coated probe contact-scans the ZnO nanorod, their peak value reaches 120 pA. The electric pulse is related with the topography of ZnO nanorod and has a time duration of 30 ms. The contact of Pt coated probe and ZnO nanorod behaves as a Schottky diode. The I-V curve showed the piezoelectric voltage must be larger than 03 V to drive Schottky diode. The resistance of Schottky contact has a magnitude of GΩ order during piezoelectric discharge, which is the major factor impacting the output of piezoelectric potential.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.