Abstract

The development of piezoelectric (PZ) quartz crystal and surface acoustic wave (SAW) biosensors based on fullerene C60 and immobilized C60-enzymes/antibodies/proteins for the detection of various biological species are reported. The C60 coated piezoelectric crystal sensors can be applied to the study of interactions between fullerene C60 and some biological species, such as enzymes, antibodies, proteins and heparin. The partial irreversible responses for some biospecies from C60 molecules were observed by the desorption study which implied that C60 could chemically react with these biological species. Thus, immobilized biological species, e.g. C60-GOD, C60-catalase, C60-urease, C60-lipase, C60-anti IgG, C60-heparin, C60-Hb, C60-Mb and C60-anti-Hb were successfully prepared. The immobilized C60-GOD, C60-catalase, C60-urease, C60-anti-IgG and C60-anti-Hb were employed as adsorbents onto quartz crystal of various piezoelectric biosensors to detect glucose, H2O2, urea, IgG, and hemoglobin respectively. The immobilized C60-lipase was applied to distinguishably catalyze the hydrolysis of some optical isomers such as L- and D-phenyalanine methyl ester and to determine these optical isomers. The immobilized C60-heparin was employed as a good inhibitor for blood clotting like solvated heparin. The H2O2 bio-sensor was set up with the immobilized C60-catalase to detect oxygen, the product of the hydrolysis of H2O2 by C60-catalase. The immobilized C60-GOD enzyme piezoelectric glucose sensor exhibited a good sensitivity and a good lower limit for glucose. A piezoelectric crystal urea biosensor based on immobilized C60-urease was also prepared to detect urea. Comparison between solvated and immobilized enzymes used for biosensors was also made. The C60-anti IgG or C60-anti-Hb coated IgG piezoelectric crystal sensors exhibited good sensitivity, selectivity and repeatability for IgG or hemoglobin. Fullerene C60-Hb and C60-myoglobin (C60-Mb) coated surface acoustic wave (SAW) immunosensors were prepared to detect the anti-hemoglobin (anti-Hb) and anti-myoglobin (anti-Mb) antibody, respectively. An electrochemical SAW (ESAW) detection system was also developed to detect glucose in aqueous solutions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.