Abstract

A piezoelectric bimorph-based scanner operating in tip-scan mode for high speed atomic force microscope (AFM) is first presented. The free end of the bimorph is used for fixing an AFM cantilever probe and the other one is mounted on the AFM head. The sample is placed on the top of a piezoelectric tube scanner. High speed scan is performed with the bimorph that vibrates at the resonant frequency, while slow scanning is carried out by the tube scanner. The design and performance of the scanner is discussed and given in detailed. Combined with a commercially available data acquisition system, a high speed AFM has been built successfully. By real-time observing the deformation of the pores on the surface of a commercial piezoelectric lead zirconate titanate (PZT-5) ceramics under electric field, the dynamic imaging capability of the AFM is demonstrated. The results show that the notable advantage of the AFM is that dynamic process of the sample with large dimensions can be easily investigated. In addition, this design could provide a way to study a sample in real time under the given experimental condition, such as under an external electric field, on a heating stage, or in a liquid cell.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call