Abstract

Altermagnetism can achieve spin-split bands in collinear symmetry-compensated antiferromagnets. Here, we predict altermagnetic order in Janus monolayer Cr2SO with eliminated inversion symmetry, which can realize the combination of piezoelectricity and altermagnetism in a two-dimensional (2D) material, namely, 2D piezoelectric altermagnetism. It is found that Cr2SO is an altermagnetic semiconductor, and the spin-split bands of both valence and conduction bands are near the Fermi level. The Cr2SO has large out-of-plane piezoelectricity (|d31| = 0.97 pm/V), which is highly desirable for ultrathin piezoelectric device application. Due to spin-valley locking, both spin and valley can be polarized by simply breaking the corresponding crystal symmetry with uniaxial strain. Our findings provide a platform to integrate spin, piezoelectricity, and valley in a single material, which is useful for multi-functional device applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call