Abstract

Manipulating the radical concentration to modulate the properties in solid multifunctional materials is an attractive topic in various frontier fields. Viologens have the unique redox capability to generate radical states through reversible electron transfer (ET) under external stimuli. Herein, taking the viologens as the model, two kinds of crystalline compounds with different molecule-conjugated systems were designed and synthesized. By subjecting the specific model viologens to pressure, the cross-conjugated 2-X all exhibit much higher radical concentrations, along with more sensitive piezochromic behaviors, compared to the linear-conjugated 1-X. Unexpectedly, we find that the electrical resistance (R) of 1-NO3 decreased by three orders of magnitude with the increasing pressure, while that in high-radical-concentration 2-NO3 remained almost unchanged. To date, such unusual invariant conductivity has not been documented in molecular-based materials under high pressure, breaking the conventional wisdom that the generations of radicals are beneficial to improve conductivity. We highlight that adjusting the molecular conjugation modes can be used as an effective way to regulate the radical concentrations and thus modulate properties rationally.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.