Abstract

The atherosclerotic vulnerable plaque is characterized by thefoamy macrophage burden, involving impaired cholesterol efflux and deficient efferocytosis. Correspondingly, piezocatalytic therapy is an emerging solution for eliminating the foamy macrophage burden with satisfactory spatiotemporal controllability and deep penetration depth. Herein, a biomimetic Trojan horse (Au-ZnO@MM) is engineered by coating the macrophage membrane (MM) onto the surface of a rod-like Au-ZnO Schottky Junction to effectively relieve the atherosclerotic progression. These Trojan horses with the coating of MM are actively transported into subsistent foamy macrophages and generate abundant reactive oxygen species (ROS) via ultrasound-activated piezocatalysis. ROS-initiated autophagy and mitochondrial dysfunction induce substantial cell apoptosis, alleviating the burden of subsistent foamy macrophages. The resulting apoptotic fragments further significantly facilitate cholesterol excretion and trigger efferocytosis of intraplaque fresh macrophages. Ultimately, the biomimetic Au-ZnO@MM piezocatalyst not only inhibits the foaming capacity of macrophages, but also improves the function of removing cell debris, which can stabilize atherosclerotic vulnerable plaque. Meanwhile, the plasmon resonance effect of integrated gold nanoparticles enables favorable photoacoustic molecular imaging for real-time image-guided atherosclerotic therapy. This proposed biomimetic Trojan horse strategy provides the paradigm of employing ultrasound-activated piezocatalytic methodology for enhanced atherosclerotic theranostics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.