Abstract

Piezoelectric material-based catalysis that relies on an external stress-induced piezopotential has been demonstrated to be an effective strategy toward various chemical reactions. In this work, non-noble metal Ni-decorated ultralong monocrystal GaN nanowires (NWs) were prepared through a chemical vapor deposition (CVD) technique, followed by a photodeposition method. The piezocatalytic activity of the GaN NWs was enhanced by ∼9 times after depositing the Ni cocatalyst, generating hydrogen gas of ∼88.3 μmol·g-1·h-1 under ultrasonic vibration (110 W and 40 kHz), which is comparable to that of Pt-loaded GaN NWs. Moreover, Ni/GaN NWs with smaller diameters (∼100 nm) demonstrated superior piezocatalytic efficiency, which can be attributed to the large piezoelectric potential evidenced by both finite-element analysis and piezoresponse force microscopy measurements. These results demonstrate the promising application potential of non-noble metal loaded GaN nanostructures in hydrogen generation driven by weak mechanical energy from the surrounding environment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.