Abstract

Piezo2 is a mechanically gated ion channel most commonly expressed by specialized mechanoreceptors, such as the enteroendocrine cells (EECs) of the gastrointestinal epithelium. A subpopulation of EECs expresses Piezo2 and functionally resembles the skin's touch sensors, called Merkel cells. Low-magnitude mechanical stimuli delivered to the mucosal layer are primarily sensed by mechanosensitive EECs in a process we term "gut touch." Piezo2 transduces cellular forces into ionic currents, a process that is sensitive to bilayer tension and cytoskeletal depolymerization. E-cadherin is a widely expressed protein that mediates cell-cell adhesion in epithelia and interacts with scaffold proteins that anchor it to actin fibers. E-cadherin was shown to interact with Piezo2 in immortalized cell models. We hypothesized that the Piezo2-E-cadherin interaction is important for EEC mechanosensitivity. To test this, we used super-resolution imaging, co-immunoprecipitation, and functional assays in primary tissues from mice and gut organoids. In tissue EECs and intestinal organoids, we observed multiple Piezo2 cellular pools, including one that overlaps with actin and E-cadherin at the cells' lateral walls. Further, E-cadherin co-immunoprecipitated with Piezo2 in the primary colonic epithelium. We found that E-cadherin knockdown decreases mechanosensitive calcium responses in mechanically stimulated primary EECs. In all, our results demonstrate that Piezo2 localizes to the lateral wall of EECs, where it physically interacts with E-cadherin and actin. They suggest that the Piezo2-E-cadherin-actin interaction is important for mechanosensitivity in the gut epithelium and possibly in tissues where E-cadherin and Piezo2 are co-expressed in epithelial mechanoreceptors, such as skin, lung, and bladder.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.