Abstract

The synovial joints senses and responds to a multitude of physical forces to maintain joint homeostasis. Disruption of joint homeostasis results in development of osteoarthritis (OA), a disease characterized by loss of joint space, degeneration of articular cartilage, remodeling of bone and other joint tissues, low-grade inflammation, and pain. How changes in mechanosensing in the joint contribute to OA susceptibility remains elusive. PIEZO1 is a major mechanosensitive cation channel in the joint directly regulated by mechanical stimulus. To test whether altered PIEZO1 channel activity causes increased OA susceptibility, we determined whether variants affecting PIEZO1 are associated with dominant inheritance of age-associated familial OA. We identified four rare coding variants affecting PIEZO1 that are associated with familial hand OA. Single channel analyses demonstrated that all four PIEZO1 mutant channels act in a dominant-negative manner to reduce the open probability of the channel in response to pressure. Furthermore, we show that a GWAS mutation in PIEZO1 associated with reduced joint replacement results in increased channel activity when compared with WT and the mutants. Our data support the hypothesis that reduced PIEZO1 activity confers susceptibility to age-associated OA whereas increased PIEZO1 activity may be associated with reduced OA susceptibility.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.