Abstract

Accumulating evidence has revealed the mechanosensitive ion channel protein Piezo1 is contributing to tumorigenesis. However, its role in hepatocellular carcinoma (HCC) remains unexplored. In this study, we demonstrated that Piezo1 was expressed in the HepG2 cell line and depletion of Piezo1 impaired proliferation and migration, as well as increased apoptosis in these cells. Using a Piezo1-specific activator, Yoda1, we identified that calcium entry induced by Yoda1 resulted in phosphorylation of JNK, p38, and ERK, thereby activating the mitogen-activated protein kinase (MAPK) pathway, in a dose- and time-dependent manner. More strikingly, Piezo1 activation integrated with YAP signaling to control the nuclear translocation of YAP and regulation of its target genes. JNK, p38, and ERK (MAPK signaling) regulated Yoda1-induced YAP activation. Consistent with the association of calpain with Piezo1, we also found that calpain activity was decreased by siRNA-mediated knockdown of Piezo1. In addition, the growth of HCC tumors was inhibited in Piezo1 haploinsufficient mice. Together, our findings establish that the Piezo1/MAPK/YAP signaling cascade is essential for HepG2 cell function. These results highlight the importance of Piezo1 in HCC and the potential utility of Piezo1 as a biomarker and therapeutic target.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.