Abstract
Mitochondrial homeostasis plays a crucial role in degenerative joint diseases, including cartilaginous endplate (CEP) degeneration. To date, research into mitochondrial dynamics in IVDD is at an early stage. Since Piezo1 is a novel Ca2+-permeable channel, we asked whether Piezo1 could modulate mitochondrial fission through Ca2+ signalling during CEP degeneration. Invitro and invivo models of inflammation-induced CEP degeneration were established with lipopolysaccharide (LPS). We found increased expression of Piezo1 in degenerated CEP tissues and LPS-treated CEP cells. The Piezo1 activator Yoda1 exacerbated CEP cell senescence and apoptosis by triggering Ca2+ influx. Yoda1 also induced mitochondrial fragmentation and dysfunction. In contrast, the Piezo1 inhibitor GsMTx4 exerted cytoprotective effects in LPS-treated CEP cells. Additionally, the CaMKII inhibitor KN-93 reversed Yoda1-induced mitochondrial fission and restored mitochondrial function. Mechanistically, the phosphorylation and mitochondrial translocation of Drp1 were regulated by the Ca2+/CaMKII signalling. The Drp1 inhibitor Mdivi-1 suppressed mitochondrial fission, then reduced mitochondrial dysfunction and CEP cell death. Moreover, knockdown of Piezo1 by siRNA hindered CaMKII and Drp1 activation, facilitating the redistribution of mitochondrial Drp1 to the cytosol in LPS-treated CEP cells. Piezo1 silencing improved mitochondrial morphology and function, thereby rescuing CEP cell senescence and apoptosis under inflammatory conditions. Finally, subendplate injection of GsMTx4 or AAV-shPiezo1 alleviated CEP degeneration in a rat model. Thus, Piezo1 may exacerbate inflammation-induced CEP degeneration by triggering mitochondrial fission and dysfunction via the Ca2+/CaMKII/Drp1 axis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.