Abstract

This article presents a smart device for active cancellation of flow instabilities. An array of two piezo unimorph actuators fabricated in piezo-polymer-composite technology is combined with a thin silicone membrane to mimic a movable wall with a closed surface. By locally displacing the thin membrane, a surface wave is generated that interferes with naturally occurring flow instabilities within the boundary layer of an airfoil. Using flow sensors and an intelligent control enables a destructive interference and therefore, an attenuation of natural flow instabilities. This leads to a delay of transition. The boundary layer remains laminar which means drag is reduced. Within the next pages, the setup of the device with actuators, membrane, sensors, and control is introduced. The main focus of this article is on actuator design, modeling, and implementation for wind tunnel experiments. Results of actuator characterization are presented. The non-linear behavior of the piezoactuator (harmonic distortions and impact of high electric fields) is investigated in detail. This study concludes with the results obtained in wind tunnel experiments which prove the functionality of the presented approach. A maximal attenuation of natural occurring flow instabilities of 80% is achieved.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.