Abstract

An emerging actuation technique in piezo driven nanopositioners is differential actuation, where each axis has two opposing actuators that operate differentially and provide bilateral motion. It has simultaneous benefits of improving linearity and range of displacement. However, few methods for displacement sensing employing in-situ transducers have been considered for this kind of nanopositioners. We address a novel application of PZT piezoelectric chips for direct displacement sensing in differentially driven nanopositioners. First, an electromechanical force analysis is performed in order to increase the PZT sensor sensitivity through the structural design of the nanopositioner. Secondly, the sensing performances of the proposed in-situ PZT sensor are compared with those from an alternative built-in piezoresistive (PZR) strain gauge sensor under equal circumstances, in different sensing and actuation configurations. While the PZR sensor has a larger sensing bandwidth than the PZT one and performs better if the actuation frequency is smaller than 30 Hz, the PZT sensors provides better accuracy when the actuation is well within its sensing bandwidth. The accuracy of the differential sensors and the input-displacement linearity are improved when the mechanical preload force magnitudes on the opposing actuators are balanced. The differential PZT sensor can provide accurate measurements even in a non-differential mode after recalibration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.