Abstract

PurposeThe purpose of this paper is to develop lightweight actuators in order to replace conventional hydraulic/pneumatic actuators and to apply the actuation system to a small flying vehicle.Design/methodology/approachA new type of control surface using a piezo‐composite actuator for a small flying vehicle has been designed and manufactured. The piezo‐composite actuator is composed of a piezoelectric ceramic layer, a carbon/epoxy layer and glass/epoxy layers. Through this, the miniaturization and weight reduction of the actuation systems for flying vehicle can be achieved. A simple model of the control surface has been manufactured and evaluated through experiments.FindingsThe performance test results showed that the developed actuator can produce stable angle of attack independent of the applied loading. A radio controller for the actuator was developed to control the motions wirelessly. It was found that the piezo‐composite actuator and its integrated controller system have a possibility to be used not only as a small flying vehicle but also as a control surface actuator of a small unmanned flying robot through the miniaturization of power supply and control system.Originality/valueThe paper describes the procedures of designing and manufacturing smart structure application of the piezo‐composite actuator with performance evaluation and comparison method. It is expected that piezo‐composite actuator can be used as a small flying vehicle control surface actuator through the miniaturization of power supply and control system with the use of the integrated radio controller MIPAD.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call