Abstract
A compact algorithm is presented for solving the convex piecewise-linear-programming problem, formulated by means of a separable convex piecewise-linear objective function (to be minimized) and a set of linear constraints. This algorithm consists of a finite sequence of cycles, derived from the simplex method, characteritic of linear programming, and the line search, characteristic of nonlinear programming. Both the required storage and amount of calculation are reduced with respect to the usual approach, based on a linear-programming formulation with an expanded tableau. The tableau dimensions arem×(n+1), wherem is the number of constraints andn the number of the (original) structural variables, and they do not increase with the number of breakpoints of the piecewise-linear terms constituting the objective function.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.