Abstract

Abstract Piecewise tendency diagnosis (PTD) is extended and employed to study the dynamics of weather regime transitions. Originally developed for adiabatic and inviscid quasigeostrophic flow on a beta plane, PTD partitions local geopotential tendencies into a linear combination of dynamically meaningful source terms within a potential vorticity (PV) framework. Here PTD is amended to account for spherical geometry, diabatic heating, and ageostrophic processes, and is then used to identify the primary mechanisms responsible for Northern Hemisphere weather regime transitions. Height tendency patterns obtained by summing the contributions of individual PTD forcing terms correspond very well to actual height tendencies. Composite PTD analyses reveal that linear PV advections provide the largest dynamical forcing for the weather regime development over the North Pacific. Specifically, linear baroclinic growth provides the primary forcing while barotropic deformation of PV anomalies provides a secondary contrib...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.