Abstract
A.V. Pogorelov introduced developable surfaces with regularity (twice differentiability) violated along separate lines. In particular, the surface may not be smooth at all points of these lines (which form edges in this case). It is assumed that each point of the surface under consideration that belongs to a curvilinear edge (as well as any other interior point of this surface) has a neighborhood isometric to a Euclidean disk. In this paper we study the behavior of a developable surface near its curvilinear edge. It is proved that if two smooth pieces of a developable surface are adjacent along a curvilinear edge, then the spatial location of one of them in ℝ3 is uniquely determined by that of the other.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Steklov Institute of Mathematics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.