Abstract

Piecewise quasilinearization methods for singular boundary-value problems in second-order ordinary differential equations are presented. These methods result in linear constant-coefficients ordinary differential equations which can be integrated analytically, thus yielding piecewise analytical solutions. The accuracy of the globally smooth piecewise quasilinear method is assessed by comparisons with exact solutions of several Lane–Emden equations, a singular problem of non-Newtonian fluid dynamics and the Thomas–Fermi equation. It is shown that the smooth piecewise quasilinearization method provides accurate solutions even near the singularity and is more precise than (iterative) second-order accurate finite difference discretizations. It is also shown that the accuracy of the smooth piecewise quasilinear method depends on the kind of singularity, nonlinearity and inhomogeneities of singular ordinary differential equations. For the Thomas–Fermi equation, it is shown that the piecewise quasilinearization method that provides globally smooth solutions is more accurate than that which only insures global continuity, and more accurate than global quasilinearization techniques which do not employ local linearization.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.