Abstract
Traditional portfolio insurance (PI) strategy, such as constant proportion portfolio insurance (CPPI), only considers the floor constraint but not the goal aspect. This paper proposes a goal-directed (GD) strategy to express an investor’s goal-directed trading behavior and combines this floor-less GD strategy with the goal-less CPPI strategy to form a piecewise linear goal-directed CPPI (GDCPPI) strategy. The piecewise linear GDCPPI strategy shows that there is a wealth position M at the intersection of the GD and CPPI strategies. This M position guides investors to apply the CPPI strategy or the GD strategy depending on whether current wealth is less than or greater than M, respectively. In addition, we extend the piecewise linear GDCPPI strategy to a piecewise nonlinear GDCPPI strategy. This paper applies genetic algorithm (GA) technique to find better piecewise linear GDCPPI strategy parameters than those under the Brownian motion assumption. This paper also applies forest genetic programming (GP) technique to generate the piecewise nonlinear GDCPPI strategy. The statistical tests show that the GP strategy outperforms the GA strategy which in turn outperforms the Brownian strategy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.