Abstract
We consider a piecewise-multilinear interpolation of a continuous random field on a d-dimensional cube. The approximation performance is measured using the integrated mean square error. Piecewise-multilinear interpolator is defined by N-field observations on a locations grid (or design). We investigate the class of locally stationary random fields whose local behavior is like a fractional Brownian field, in the mean square sense, and find the asymptotic approximation accuracy for a sequence of designs for large N. Moreover, for certain classes of continuous and continuously differentiable fields, we provide the upper bound for the approximation accuracy in the uniform mean square norm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.