Abstract

In this paper we consider iterated function systems (IFS) on the real line consisting of continuous piecewise linear functions. We assume some bounds on the contraction ratios of the functions, but we do not assume any separation condition. Moreover, we do not require that the functions of the IFS are injective, but we assume that their derivatives are separated from zero. We prove that if we fix all the slopes but perturb all other parameters, then for all parameters outside of an exceptional set of less than full packing dimension, the Hausdorff dimension of the attractor is equal to the exponent which comes from the most natural system of covers of the attractor.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.