Abstract
Considering high-order digital modulation schemes, the bottleneck in consumer products is the detector rather than the modulator. The complexity of the optimal a posteriori probability (APP) detector increases exponentially with respect to the number of modulated bits per data symbol. Thus, it is necessary to develop low-complexity detection algorithms with an APP-like performance, especially when performing iterative detection, for example in conjunction with bit interleaved coded modulation. We show that a special case of superposition modulation, dubbed Direct Superposition Modulation (DSM), is particularly suitable for complexity reduction at the receiver side. As opposed to square QAM, DSM achieves capacity without active signal shaping. The main contribution is a low-cost detection algorithm for DSM, which enables iterative detection by taking a priori information into account. This algorithm exploits the approximate piecewise linear behavior of the soft outputs of an APP detector over the entire range of detector input values. A theoretical analysis and simulation results demonstrate that at least max-log APP performance can be reached, while the complexity is significantly reduced compared to classical APP detection.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.