Abstract

Current architecture complexity requires fine tuning of compiler and runtime parameters to achieve full potential performance. Autotuning substantially improves default parameters in many scenarios but it is a costly process requiring a long iterative evaluation. We propose an automatic piecewise autotuner based on CERE Codelet Extractor and REplayer. CERE decomposes applications into small pieces called codelets: each codelet maps to a loop or to an OpenMP parallel region and can be replayed as a standalone program. Codelet autotuning achieves better speedups at a lower tuning cost. By grouping codelet invocations with the same performance behavior, CERE reduces the number of loops or OpenMP regions to be evaluated. Moreover unlike whole-program tuning, CERE customizes the set of best parameters for each specific OpenMP region or loop. We demonstrate CERE tuning of compiler optimizations, number of threads and thread affinity on a NUMA architecture. On average over the NAS 3.0 benchmarks, we achieve a speedup of 1.08$$\times $$ after tuning. Tuning a single codelet is 13$$\times $$ cheaper than whole-program evaluation and estimates the tuning impact on the original region with a 94.7i?ź% accuracy. On a Reverse Time Migration RTM proto-application we achieve a 1.11$$\times $$ speedup with a 200$$\times $$ cheaper exploration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.