Abstract

In this paper, a novel anti-windup dynamic output compensator is developed to deal with the robust H infin output feedback control problem of nonlinear processes with amplitude and rate actuator saturations and external disturbances. Via fuzzy modeling of nonlinear systems, the proposed piecewise fuzzy anti-windup dynamic output feedback controller is designed based on piecewise quadratic Lyapunov functions. It is shown that with sector conditions, robust output feedback stabilization of an input-constrained nonlinear process can be formulated as a convex optimization problem subject to linear matrix inequalities. Simulation study on a strongly nonlinear continuously stirred tank reactor (CSTR) benchmark plant is given to show the performance of the proposed anti-windup dynamic compensator.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.