Abstract

Piecewise continuous spline of Lagrange type are constructed. An embedding of spline spaces is established for arbitrary refinement of grids. The system of biorthogonal linear functionals to splines is constructed. Wavelet decompositions and decomposition and reconstruction algorithms in the case of an infinite flow for a grid on an open interval and a finite flow for a grid on a segment are constructed.

Highlights

  • Splines and wavelets are widely used in information theory

  • Wavelet decompositions are connected with constructing effective algorithms for processing large digital information flows

  • If (α, β) = R1 and a grid is uniform, one can apply the powerful tools of harmonic analysis (in the space of functions L2(R1) and in the space of sequences l2), lifting scheme or wavelet scheme

Read more

Summary

НА НЕРАВНОМЕРНОЙ СЕТКЕ

Система {ωj(t)}j∈Z линейно независима, благодаря локальности носителей функций ωj(t) и отделенности от нуля функции φ на интервале (α, β). Линейная оболочка функций ωj(t), получаемых для функции φ ∈ C −1(α, β), φ(t) = 0 ∀ t ∈ (α, β) по формуле (2), называется пространством кусочно-непрерывных сплайнов на сетке X и обозначается через. 1. Записывая аппроксимационные соотношения (2) при t ∈ [xk, ξ) для функций ωj(t) и ωj (t) (на сетках X и X соответственно) ввиду равенства [xk, ξ) = [xk, xk+1) находим ωk(t) ≡ φ(t), ωk(t) ≡ φ(t); отсюда ∀t ∈ [xk, ξ) получаем тождество ωk(t) ≡ ωk(t), фактически совпадающее с тождеством (5) на рассматриваемом промежутке, ибо на нем ωk+1(t) ≡ 0.

Далее рассмотрим матрицу
Прямоугольная матрица
Рассмотрим оператор для которого
Wn def
Bn ker
Рассмотрим линейный оператор из пространства
SUMMARY

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.