Abstract
We give a new existence proof for the rank 2 d even lattices usually called the Barnes–Wall lattices, and establish new results on uniqueness, structure and transitivity of the automorphism group on certain kinds of sublattices. Our proofs are relatively free of calculations, matrix work and counting, due to the uniqueness viewpoint. We deduce the labeling of coordinates on which earlier constructions depend. Extending these ideas, we construct in dimensions 2 d , for d ≫ 0 , the Ypsilanti lattices, which are families of indecomposable even unimodular lattices which resemble the Barnes–Wall lattices. The number ϒ ( 2 d ) of isometry types here is large: log 2 ( ϒ ( 2 d ) ) has dominant term at least r 4 d 2 2 d , for any r ∈ [ 0 , 1 2 ) . Our lattices may be the first explicitly given families whose sizes are asymptotically comparable to the Siegel mass formula estimate ( log 2 ( mass ( n ) ) has dominant term 1 4 log 2 ( n ) n 2 ). This work continues our general uniqueness program for lattices, begun in Pieces of Eight (Adv. in Math. 148 (1999) 75). See also our new uniqueness proof for the E 8 -lattice (J. Number Theory 103 (2003) 77).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.