Abstract

The goal of increasing computational efficiency is one of the fundamental challenges of both theoretical and applied research in mathematical modeling. The pursuit of this goal has lead to wide diversity of efforts to transform a specific mathematical problem into one that can be solved efficiently. Recent years have seen the emergence of highly efficient methods and software for solving Mixed Integer Programming Problems, such as those embodied in the packages CPLEX, MINTO, XPRESS-MP. The paper presents a method to develop a piece-wise linear approximation of an any desired accuracy to an arbitrary continuous function of two variables. The approximation generalizes the widely known model for approximating single variable functions, and significantly expands the set of nonlinear problems that can be efficiently solved by reducing them to Mixed Integer Programming Problems. By our development, any nonlinear programming problem, including non-convex ones, with an objective function (and/or constraints) that can be expressed as sums of component nonlinear functions of no more than two variables, can be efficiently approximated by a corresponding Mixed Integer Programming Problem.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.