Abstract

In driverless systems (scenarios such as subways, buses, trucks, etc.), multi-modal data fusion, such as light detection and ranging (LiDAR) points and camera images, is essential for accurate 3D object detection. In the fusion process, the information interaction between the modes is challenging due to the different coordinate systems of various sensors and the significant difference in the density of the collected data. It is necessary to fully consider the consistency and complementarity of multi-modal information, make up for the gap between multi-source data density, and achieve the joint interactive processing of multi-source information. Therefore, this paper is based on Transformer to improve a new multi-modal fusion model called PIDFusion for 3D object detection. Firstly, the method uses the results of 2D instance segmentation to generate dense 3D virtual points to enhance the original sparse 3D point clouds. This optimizes the issue that the nearest Euclidean distance in the 2D image space cannot ensure the nearest in the 3D space. Secondly, a new cross-modal fusion architecture is designed to maintain individual per-modality features to take advantage of their unique characteristics during 3D object detection. Finally, an instance-level fusion module is proposed to enhance semantic consistency through cross-modal feature interaction. Experiments show that PIDFusion is far ahead of existing 3D object detection methods, especially for small and long-range objects, with 70.8 mAP and 73.5 NDS on the nuScenes test set.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.