Abstract

Abstract The present work presents teaching–learning based optimization (TLBO) algorithm as an optimization technique in the area of tuning of the classical controller installed in automatic voltage regulator (AVR). The proposed TLBO algorithm is applied with an aim to find out the optimum value of proportional integral derivative (PID) controller gains with first order low pass filter installed in the AVR. The voltage response of the AVR system, as obtained by using the proposed TLBO based PID controller with first order low pass filter, is compared to those offered by the other algorithms reported in the recent state-of-the-art literatures. The advantage of using this control strategy may be noted by providing good dynamic responses over a wide range of system parametric variations. For on-line, off-nominal operating conditions, fast acting Sugeno fuzzy logic technique is applied to obtain the on-line dynamic responses of the studied model. Furthermore, robustness analysis is also carried out to check the performance of the designed TLBO based PID controller. An analysis, based on voltage response profile, has been investigated with the variations of the model parameters. The simulation results show that the proposed TLBO based PID controller is a significant optimization tool in the subject area of the AVR system. The essence of the present work signifies that the proposed TLBO technique maybe, successfully, applied for the AVR of power system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call