Abstract

A technique is developed based on the use of a neural network model for performing information retrieval in a pictorial information system. The neural network provides autoassociative memory operation and allows the retrieval of stored symbolic images using erroneous or incomplete information as input. The network used is based on an adaptation of the random neural network model featuring positive and negative nodes and symmetrical behavior of positive and negative signals. The network architecture considered has hierarchical structure and allows two-level operation during learning and recall. An experimental software prototype, including an efficient graphical interface, has been implemented and tested. The performance of the system has been investigated through experiments under several schemes concerning storage and reconstruction of patterns. These schemes are either based on properties of the random network or constitute adaptations of known neural network techniques.< <ETX xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">&gt;</ETX>

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.