Abstract

The reactive oxygen species (ROS) and phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) signaling pathway play critical roles in the pathogenesis of prostate cancer by modulating cell proliferation. Picropodophyllin (PPP), an inhibitor of the insulin-like growth factor 1 receptor (IGF-1R), exerts significant antitumor effects via the PI3K/AKT signaling pathway. However, the effects of PPP on prostate cancer via ROS production and the PI3K/AKT signaling pathway remain elusive. Herein, we focused on examining the antitumor effects of PPP on DU145 and LNCaP human prostate cancer cells to determine the possible molecular mechanism. Our data indicated that the inhibitory effect of PPP on the proliferation of DU145 and LNCaP human prostate cancer cells was mediated by apoptosis induction and cell cycle blockade. Furthermore, PPP significantly influenced the expression of apoptosis-related, cell cycle, ROS production, and PI3K/AKT signaling proteins. These findings suggest that PPP can induce cell cycle arrest and apoptosis via the production of ROS and inhibition of PI3K/AKT signaling pathway, thereby suppressing the proliferation of prostate cancer cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call