Abstract

The picosecond molecular dynamics in an artificial bacteriorhodopsin (BR) pigment, BR6.11, are measured by picosecond time-resolved coherent anti-Stokes Raman spectroscopy (PTR/CARS) and picosecond transient absorption (PTA). The BR6.11 pigment contains a structurally modified retinal chromophore with a six-membered carbon ring bridging the C11C12−C13 bonds, which both locks the C11C12 bond in the trans configuration and prevents rotation about the C12−C13 bond. The changes in the vibrational degrees of freedom of the retinal attributable to the six-membered carbon ring are found in the picosecond resonance CARS (PR/CARS) spectrum of ground-state BR6.11. Normal mode assignments for more than forty BR6.11 vibrational features are made through comparisons with the PR/CARS data from native BR-570 (previously analyzed in terms of the selective isotopic substitution of the retinal). PTR/CARS spectra from two intermediates (J6.11 and K6.11), observed by PTA to appear during the initial 200 ps of the BR6.11 phot...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.