Abstract

We demonstrate that picosecond time-gated fluorescence microscopy can be used to monitor subtle changes in the kinetics and spatial distribution of perturbations to the molecular and cellular structure of plant tissue caused by ultraviolet radiation. Single-molecule experiments on Photosystem II and chloroplast preparations give picosecond fluorescence decay kinetics that are similar to those obtained previously on bulk samples. For green plant leaves, localized and well-defined cellular structure is seen for normal material whereas relatively diffuse and non-specific features are seen after UV-irradiation indicating significant UV-induced rupture of the cellular structure. The changes in the chlorophyll fluorescence decay kinetics indicate uncoupling of chlorophyll molecules in the light-harvesting system leading to inhibition of energy reorganization and transfer in the antennae and subsequent exciton transfer to the reaction centers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.