Abstract

Time-dependent fluorescence shifts (TDFS) of polar compounds in a series of alcoholic solvents have been studied on a pico-second time scale. A non-exponential TDFS kinetic behaviour is observed, particularly at short times (0< t< 50 ps). It cannot be represented by a sum of decreasing exponentials. The effects of solute-solvent interactions on the kinetics of TDFS have been analysed. It is shown that the non-standard kinetics is due to hydrogen bonding in the solvent, particularly to the presence of alcoholic hydrogen-bonded aggregates. Following electronic excitation of the polar solute reorganization of solvent aggregates controls the TDFS time development. Our results show that a simple Debye model is inadequate to explain such a process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.