Abstract

The formation of nitrate radical, NO(3)(•), is observed for the first time directly by picosecond pulse radiolysis of highly concentrated nitric acid solutions. The experimental yield of NO(3)(-) ionization is deduced from the pulse-probe transient absorption measurements in the visible region where this radical absorbs. On the basis of the value of the extinction coefficient of nitrate radical at 640 nm equal to 1300 M cm(-1), the experimental yield of NO(3)(•) at 20 ps is found to be around 0.36 × 10(-7), 1.33 × 10(-7), and 2.85 × 10(-7) mol J(-1) for 1, 3.5, and 7 M nitric acid solutions, respectively. Relative to the dose absorbed by nitric acid by the direct effect, we find an unexpected high formation yield of the nitrate radical within the electron pulse. Therefore, we suggest that the trapping of the positive hole, H(2)O(•+), by NO(3)(-) also contributes to the formation of NO(3)(•) within the electron pulse. Moreover, after the pulse and within 4 ns, the beginning of the reaction of OH(•) radical with undissociated nitric acid is observed for the most concentrated nitric acid solution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.