Abstract

Time-resolved photoluminescence is universally regarded as a very useful probe in the investigation of the dynamic behavior of high density electron-hole systems in direct-gap semiconductors, in which carrier lifetimes are of the order of nanoseconds or less. Two applications of this technique include (1) the observation of excitons in which a conduction electron and a valence hole are bound to one another via the long-range Coulomb interaction and (2) the formation of excitonic molecules (or biexcitons), which is caused by the attractive covalent bonding between two single excitons. This paper reviews transient photoluminescence techniques used recently in the study of such highly excited systems. Interaction between excitons at high concentration is discussed, and some experimental results for ZnSe and GaAs are presented.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call