Abstract

The trans–cis isomerization rates for stiff-diphenylbutadiene (S-DPB) in n-alkane solvents were measured using single photon counting methods and the rotational reorientation times τR for S-DPB and trans stilbene were obtained by picosecond polarization spectroscopy. In neither case did τR vs viscosity show Stokes–Einstein–Debye (SED) behavior. The values of τR were used to calculate the angular velocity correlation frequencies β using the Hubbard relation. The variation of isomerization rate with β was found to be predicted well by the Kramers equation when barrier frequencies of 154 cm−1 for stilbene and 16 cm−1 for S-DPB were used. This Kramers-Hubbard fit finesses questions regarding the validity of the one dimensional Kramers model and focuses attention on the SED equation. The dynamical relationship between the torsional friction, important in isomerization, and rotational friction, which determines the overall angular motion of the molecules, is discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.