Abstract

Excitonic optical bistability with picosecond switching time in ZnSeCdZnSe multiple quantum wells (MQWs) with a Fabry-Pérot (FP) cavity is investigated at room temperature. The result indicates that the threshold and switching time for the optical bistability in ZnSeCdZnSe MQWs with a FP cavity are about 210 kW/cm2 and 50 ps, respectively. On the basis of the excitonic nonlinear theories, excitonic absorption spectra in the ZnSeCdZnSe MQWs under different excitation intensities obtained here, we attribute the major nonlinear mechanism for the optical bistability in ZnSeCdZnSe MQWs with a FP cavity to the phase space filling of excitonic states and excitonic band broadening due to exciton-exciton interactions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.