Abstract

Abstract The ultrafast modulation of terahertz (THz) waves is essential for numerous applications, such as high-rate wireless communication, nonreciprocal transmission, and linear frequency conversion. However, high-speed THz devices are rare due to the lack of materials that rapidly respond to external stimuli. Here, we demonstrate a dynamic THz metasurface by introducing an ultrathin superconducting microbridge into metallic resonators to form a superconductor-metal hybrid structure. Exploiting the susceptibility of superconducting films to external optical and THz pumps, we realized resonance mode switching within a few picoseconds. The maximum on/off ratio achieved is 11 dB. The observed periodic oscillation of transmission spectra both in the time and frequency domain under intense THz pump pulse excitation reveals the excitation of Higgs amplitude mode, which is used to realize picosecond scale THz modulation. This study opens the door to ultrafast manipulation of THz waves using collective modes of condensates, and highlights an avenue for developing agile THz modulation devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.